
Model-based engineering of user interfaces
to support cognitive load estimation in automotive

applications

Giorgio Brajnik
Computer Science School

University of Manchester, UK
and

Dipartimento di Matematica e Informatica
Università di Udine, Italy

brajnik@uniud.it

Simon Harper
Computer Science School

University of Manchester, UK
simon.harper@manchester.ac.uk

ABSTRACT
In this brief position paper we argue that model-driven engineering
practices could be adopted in the design and evaluation of automo-
tive UI. We illustrate how UML state machine models can be used
for automatic generation of executable prototypes of the UI and for
computing graph-theoretic metrics that could bear upon cognitive
load.

Categories and Subject Descriptors
H.1.2 [Information Systems Applications]: Models and Princi-
ples—Human factors; H.5.2 [Information Interfaces and Presen-
tation]: User Interfaces—Prototyping, user-centered design, Graph-
ical user interfaces; D.2.8 [Software Engineering]: Metrics—
complexity measures, performance measures; D.2.m [Software En-
gineering]: Miscellaneous—rapid prototyping; D.2.2 [Software
Engineering]: State diagrams—UML state machines, statecharts

General Terms
Software engineering, model-based user interfaces, model-driven
engineering, interaction design, usability

1. INTRODUCTION
Bad usability critically affects embedded systems such as those

on board of cars for two reasons. On the one hand, systems are
costly to replace (higher costs in recalling, in disseminating, in re-
installing new versions); on the other hand, their context of use is
critical, as bad usability in such user interfaces often leads to low
safety.

Although advanced UIs can be conceived that reduce drivers’
cognitive load, drivers will still have to interact with them. For
example, [5] highlight several factors that can lead to drivers’ dis-
tractions when using a GPS navigator and suggest remedies such
as: while driving in familiar areas the level of detail of instructions

AutomotiveUI’13, October 27-30, Eindhoven, The Netherlands.
Adjunct Proceedings.
Copyright 2013 held by the authors.

provided by the navigator should be reduced, whereas it should in-
crease with high traffic density, or bad weather, or when driving in
unknown areas. Even with such adaptive navigators that optimize
their output, drivers might need to interact with the navigator while
driving: to turn off or on its voice, to change view on the map, to
get an overview of the suggested route, to see the estimated time
or distance to arrival, to locate some intermediate destination on
the map, etc. Each of these use cases might require an attention
switch that could be fatal, especially if the user interface requires
observation and concentration.

To produce designs of user interface that are valid, there is no
substitute of iteratively carrying out usability investigations. How-
ever, designers use static prototypes (sketches, storyboards, page
mockups) or minimally interactive ones (clickable PDFs or slides),
which lack most details regarding the dynamics of the user inter-
face. In fact, because prototypes are manually built, not all the data
nor all user actions are implemented and can be therefore investi-
gated. As argued by [4], mixed-fidelity prototypes are often needed
in order to perform a usability investigation that can reveal major
usability problems. Almost always, because of cost, manually built
prototypes show poor levels of fidelity in terms of richness of data
and of interactivity, reducing the interactions that could be consid-
ered during the investigation. And this is despite user actions being
an important focal point of designers ([1] offers an ample discus-
sion) and crucial for usability investigations (cfr. “interaction cy-
cle” by [6], goal-action-effect “triangle” [3]).

A different line of attack is based on using metrics. Over the
years, metrics have been developed that can be applied to user inter-
faces with the aim of characterizing some property that bears upon
usability. For example, [9] illustrate a number of graph-related met-
rics that can be used to highlight usability aspects of user interfaces.
Using a transition network where states represent screens of the
user interface and transitions represent user actions, these authors
show that metrics that measure centrality in a graph, such as “be-
tweenness” of states, do bear upon usability defects of devices like
hospital infusion pumps, and that findings deriving from such met-
rics could be used to identify severe problems and hence to prompt
for design modifications.

2. MODEL-DRIVEN ENGINEERING
The context of this research is model-driven engineering (MDE)

methodologies [7, 8] for developing user interfaces. In general
these approaches provide means for using models to direct the course
of understanding design, construction, deployment, operation, main-



tenance and modification of software systems. They combine domain-
specific modeling languages, that formalize aspects of the system
that are specific to particular domains, with transformation engines
and generators that are used to synthesize several types of arti-
facts, from source code to test cases, in order to achieve the pro-
cess known as “correct-by-construction”, as opposed to the more
frequent “construct-by-correction” approach. CAMELEON is a
reference framework for model-based approaches to the develop-
ment of interactive context-sensitive systems. Development and
maintenance of user interfaces occur through a layered architecture
encompassing different models that separate the concerns [2], and
corresponding transformation rules between models.

A basic tenet of model-based user interfaces is the ability to
specify models that are expressive enough to explicitly represent
the properties that are suitable for a given kind of analysis or pro-
cessing. In our case, we are interested in finding out usability de-
fects associated to the interaction structure and in computing met-
rics that are linked to cognitive load.

More specifically, with the UML-IDEA project (UML-based In-
teraction Design Approach) we use UML state machine models
(also known as “statecharts”) to represent the dynamics of a user
interface, UML class diagrams to represent data manipulated by the
user interface, and model annotations to associate data and widgets
to states, so that one can automatically generate executable mixed-
fidelity prototypes to be used in usability investigations. Further-
more, metrics could be computed on models so that properties of
the interaction structure can be found.

Although several suggestions on how to use statecharts for mod-
eling user interfaces are already known, UML-IDEA is the first ap-
proach that is based on a “model-to-code” transformation of UML
state machines, class diagrams and XML annotations, so that the
structure of the UI (containers and widgets) is automatically in-
ferred by the system. This allows the designer to specify as detailed
information as deemed appropriate, and still be able to generate ex-
ecutable prototypes. In addition, thanks to the orthogonality of the
models, the entire mixed-fidelity prototype space can be easily ex-
plored by the designer.

At the moment, UML-IDEA encompasses a UI compiler that is
capable of processing full UML state machine models, simplified
class diagrams and annotations, and of generating executable pro-
totypes in a HTML5/Javascript platform.

3. EXAMPLE
Consider the two models in figures 1 and 2, of cruise control de-

vices on board of two common cars (left anonymous). It is obvious
that one model is more complex than the other one: in 2 the user
can “store” the desired speed and later on engage the controller so
that the stored speed can be reached. In addition, the controller
may automatically switch off when the actual speed of the car stays
well beyond the desired speed for a certain time period. Models
include only transitions that have some effect; though other actions
can be performed (such as breaking when the system is in state
Standby), they are not modeled as they do not affect the system.

One way to understand how that added complexity manifests it-
self in terms of usability or cognitive load relies on materializing
the design into a prototype. Let’s imagine that these are two al-
ternative designs. By interacting with prototypes a designer could
figure out what sequences of actions are needed to get to a certain
state, if in a given state all available actions are needed and make
sense, and if all the different states make sense for such an appli-
cation. With such prototypes, suitably enriched with look and feel
aspects, usability experiments could be run to estimate cognitive
load and interferences of interactions with driving performance.

Because the chosen models emphasize interaction structure, mod-
els themselves provide no help in identifying usability problems
that deal, for example, with affordances of controls or with percep-
tion of UI components. However, because of the independence of
control, data and look and feel aspects, once these look and feel
aspects are defined, it is relatively easy to change the UI logic and
even the data and reuse them.

Because the state machine model specifies transitions that are
associated to either user actions (e.g., the user tapping on a wid-
get) or autonomous actions (e.g., the cruise controller switching
off automatically), possible usability problems dealing with timing
between relevant events could also be caught when using the pro-
totypes.

As briefly mentioned above, models could be used also to com-
pute graph-theoretic metrics that might be associated to cognitive
load. Besides trivial metrics such as number of states, transitions
and concurrent regions, other more complex scores can be used to
benchmark a model and even to identify weak spots in a design.

To apply such kind of metrics, the UML state machine model
has to be appropriately processed so that hierarchical states, hyper-
transitions and concurrent regions are flattened1. On the resulting
directed multi graph (the interaction graph), one could assess the
following properties among others:

• Connectivity: an interaction graph that is not strongly con-
nected has at least one state that cannot be reached from an-
other one. This might mean a partial dead end for the user,
whose consequences depend on the meaning of the isolated
state. For example, in both models “S” and “A” the final state
Off has no outgoing edges, but this is by design, and has no
negative consequences on interaction.

• Hinges and bridges: these are states and transitions that,
if removed, cause the interaction graph to become discon-
nected. Therefore they are states or actions that users need to
be aware of, otherwise a set of system behaviors will not be
available. For example, the press transition leaving state
standby in model “A” is such a bridge. If the driver is not
aware of such an action, then the whole cruise control system
is useless.

• Diameter: it is an attribute of the entire graph, and is based
on the shortest paths between all pairs of states. The larger
it is and the more unbalanced the design is, with some pairs
of states being far away. It can be used to gauge the potential
complexity of a design. For example, in “A” the diameter is
3, while in “S” it is 2.

• Centrality: in general terms, a central state in the interac-
tion graph is a state that is important (e.g., because it can
be easily reached from many other states). There are many
notions of centrality that can be considered, including eigen-
vector, pageRank, closeness and betweenness. Betweenness
of a state reflects the number of times that the state is in-
cluded in a shortest path between two other states; similarly
for a transition. High values of betweenness are associated
to states or transitions that have to be passed through often.
Table 1 shows betweenness scores for our example.

Assuming that user actions require different levels of accuracy
and attention, one could attach weights to transitions and observe
the analytic consequences of such assumptions. For example, in
model “S” certain actions require more attention than others: a
uplong action means to pull up the lever and keep it there to
continuously accelerate the car; when the lever is left the current
speed becomes the reference value for the controller. In the met-
1This is a preliminary process that in UML-IDEA is needed also
for generating prototypes.



Figure 1: UML state machine model of the cruise control on board of car model “S”. Arrows correspond to user actions.

Figure 2: UML state machine model of the cruise control on board of car model “A”. Some arrows correspond to user actions, while
others are autonomous ones.



Transition Source state Betweenness
downlong(3) Standby 0.00

uplong(3) StandbyPostEngaged 0.00
downlong(3) Engaged 0.00

uplong(3) Standby 0.00
downlong(3) StandbyPostEngaged 0.00

uplong(3) Engaged 0.00
pull(1) StandbyPostEngaged 0.33
up(1) StandbyPostEngaged 0.33

down(1) StandbyPostEngaged 0.33
pull(1) Standby 0.67
up(1) Standby 0.67

down(1) Standby 0.67
break(1) Engaged 1.00
push(1) Engaged 1.00

Transition Source state Betweenness
pushLong(3) GoFaster 0.00
downLong(3) Standby 0.00

upLong(3) GoFaster 0.00
downLong(3) NormalSpeed 0.00
pushLong(3) NormalSpeed 0.00

press(3) StandbyPostEngaged 0.00
... ... 0.00

AFTER(5min)(1) GoFaster * 0.83
break(1) GoFaster 0.83
push(1) GoFaster 0.83

pull[V<V*-10](1) StandbyPostEngaged 1.00
[V<V*-10](1) GoFaster * 1.00
pushLong(1) Standby 1.00

pull[V<V*-10](1) StandbyPostEngaged 1.00
pull[V>=V*-10](1) StandbyPostEngaged 1.00

push(1) NormalSpeed 2.17
break(1) NormalSpeed 2.17

[V>=V*-10](1) NormalSpeed * 3.00
pushLong(1) StandbyPostEngaged 4.83

press(3) Standby 6.00
pullLong(1) Disabled 7.00

Table 1: Centrality of states and some (weighted) transitions in
model S (top) and model A (bottom).

rics analysis of the model, we attached a weight of 1 to all actions
except for uplong and downlong, whose weight was set to 3.
In other words we are assuming that these two actions are 3 times
more difficult.

Because betweenness figures depend on the notion of shortest
path in the graph, which in turn is based on the “cost” of followed
transitions, the resulting scores depend on such an assumption. For
the kind of analysis that we are discussing here, however, choosing
any pair of increasing positive values would lead to similar results.

One thing that we can notice in model “S” is that “difficult” ac-
tions have a 0 betweenness score, meaning that they are not in the
way of the driver who wants to use the controller. And, vice versa,
actions that have a relatively high score are simple ones.

Compare these data with the scores obtained from model “A”
(Table 1). Notice that several actions with weight 3 have a low be-
tweenness score, which is good. However, the press action (to
initially engage the controller the driver has to radially press the
lever, which requires careful control of the hand movement) has a
centrality score of 6, indicating that it is a transition that should be
often followed. Transitions marked with “*” are autonomous ones,

that do not require a driver action. Notice that the autonomous tran-
sition [V>=V*-10] (which occurs when the actual speed exceeds
the set one by 10 or more km/h) has a relatively high centrality,
meaning that it could occur often. Therefore appropriate indicators
should be used in the user interface to notify the driver of such a
change (such as turning on or off a particular symbol in the dash-
board, or changing its color.

4. CONCLUSIONS
We attempted to show that model-driven engineering practices

could be beneficial for automotive user interfaces. Such an ap-
proach could be adopted to quickly generate running prototypes
so that usability of the UI can be assessed. A second usage is in
applying graph-theoretic metrics that can be used to benchmark a
design, to compare 2 or more designs, to estimate cognitive load
associated to interaction, and even to spot possible weak points.

Currently we are working on in-vehicle devices that require user
interaction, such as infotainment systems and GPS navigators. We
are collecting evidence that this rapid prototyping approach cou-
pled with the ability of using metrics is effective in spotting weak
areas of a design and supports informed rapid changes so that a de-
signer can easily explore a large design space. We are also explor-
ing the space of available metrics and validating promising ones.

5. REFERENCES
[1] P. Dourish. Where the action is: the foundations of embodied

interaction. The MIT Press, 2001.
[2] J. M. C. Fonseca. Model-based ui xg final report.

http://www.w3.org/2005/Incubator/
model-based-ui/XGR-mbui-20100504/, May 2010.

[3] R. Hokyoung and A. Monk. Interaction unit analysis: A new
interaction design framework. Human-Computer Interaction,
24(4):367–407, 2009.

[4] M. McCurdy, C. Connors, G. Pyrzak, B. Kanefsky, and
A. Vera. Breaking the fidelity barrier: an examination of our
current characterization of prototypes and an example of a
mixed-fidelity success. In CHI 2006, pages 1233–1242, New
York, NY, 2006. ACM, ACM Press.

[5] D. Münter, A. Kötterizsch, T. Islinger, T. Köhler, C. Wolff,
and J. Ziegler. Improving navigation support by taking care of
drivers’ situational needs. In Proc. of the 4th Int. Conf. on
Automotive User Interfaces and Interactive Vehicular
Applications, pages 131–138. ACM Press, 2012.

[6] D. Norman. The psychology of everyday things. Basic Books,
1988.

[7] D. Schmidt. Model-driven engineering. Computer, pages
25–31, February 2006.

[8] J. Siegel. Developing in OMG’s model-driven architecture.
Object Management Group White Paper, Nov. 2001.
http://www.omg.org/cgi-bin/doc?omg/
00-11-05.pdf.

[9] H. Thimbleby and P. Oladimeji. Social network analysis and
interactive device design analysis. In Proc. of Engineering
Interactive Computing Systems 2009, pages 91–100. ACM
Press, 2009.

http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
http://www.omg.org/cgi-bin/doc?omg/00-11-05.pdf
http://www.omg.org/cgi-bin/doc?omg/00-11-05.pdf

	Introduction
	Model-driven engineering
	Example
	Conclusions
	References

