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ABSTRACT 
Drivers often increase their cognitive workload (CW) through the 
use of in-vehicle technologies for communication, information, or 
entertainment. Previous work has attempted to measure CW in the 
driving domain through the use of performance, subjective, and 
physiological measures, however few have attempted to use 
pupillary response to estimate CW. The present work discusses a 
method of analyzing previously collected eye tracking data 
despite the eye tracking device’s lack of pupil diameter (PD) 
analysis abilities and the validity of such a measure in the driving 
context. A custom made parser program was developed to gather 
the data from the eye tracking files and then put through another 
program to split and organize the data into the correct blocks and 
averages. The paper also addresses the difficulties in using such 
custom application for PD analysis as well as how to address 
issues of light induced pupillary response and a short discussion 
of standardization of pupillary response for CW in driving.  

Categories and Subject Descriptors 
H.5.2 [Information Interfaces And Presentation (e.g., HCI)]: 
User Interfaces –graphical user interfaces (GUI), interaction styles 
(e.g., commands, menus, forms, direct manipulation), user-
centered design; I.6.7 [Simulation and Modeling]: Simulation 
Support Systems 

General Terms 
Measurement, Reliability, Human Factors, Standardization, 
Verification. 

Keywords 
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1. INTRODUCTION 
The definition of cognitive workload (CW), also referred to as 
cognitive demand or cognitive load, has long been debated in the 
psychological community. For the purpose of this paper CW will 
be defined similarly to how Mehler, Reimer, and Coughlin [1] 
defined cognitive demand based on De Warrd’s [2] book: load or 
demand referring to the features of a task an individual performs 
and workload meaning the affect on the individual due to his or 
her performance of the task. An area where researchers focus 
heavily on CW within psychology is in that of driving, more 
specifically the area of driving and secondary tasks.  

A prominent secondary task performed while driving is the use of 
in-vehicle technologies (IVTs). This use of IVTs while driving 

has been found to increase the CW of a driver [3]. This additional 
CW has been found to significantly decrease a driver's sensitivity 
to road events as well as lower their confidence in detection [4]. 
Furthermore, as the CW of a task increases, the risk of the user 
making an error before completing the task increases [5]. Within 
an attention-demanding task such as driving, increases in CW can 
make a big difference in safety. Measuring CW, whether during 
research or in real time, without any interaction from the driver, is 
an important area of research within the driving domain. 

1.1 Measuring Cognitive Workload  
Measuring CW can be achieved through subjective, performance, 
and physiological assessments [1,2,6]. Subjective measures, rating 
scales that convey the user's perception of the CW after each task, 
are an easy method of measuring workload. A common tool used 
for this measurement is the NASA-Task Load Index (TLX) 
assessment [8]. While this self-assessment tool provides highly 
validated measures of CW it is a subjective measure, which can be 
confounded, and it does not offer a real-time assessment without 
driver disruption, not ideal for measuring CW in a dynamic 
environment such as driving [1,7,9]. 

Since driving is most often performed in a dynamic environment, 
successful performance of the task necessitates driver attention. 
This highlights the need to measure CW in real-time without 
disrupting the user's performance [1]. To this end, unobtrusive 
measures such as driving performance or physiological responses 
can be used. In driving, performance measures are based on how 
well the user completes a particular part of the driving task (e.g., 
lane keeping, speed or speed variance, and steering wheel angle 
variance) [5].  While these performance measures may yield a 
correlation to CW, they also measure actual driving ability and 
can confound the data. Additionally, as every task measured in 
driving could be different, performance measures have to be 
tailored to each specific task, thus limiting the generalizability of 
the results [7]. 

Physiological measures can be used to interpret the user's 
cognitive state in real-time and unlike performance measures, do 
not have to be customized to each specific task, allowing for more 
flexibility and comparison across studies. Variations of these 
measures (e.g., heart rate, heart rate variability, respiration, eye 
position, and skin conductance) have been shown to correlate in 
an almost stepwise fashion with levels of induced cognitive load 
[1,7,10]. Mehler, Reimer, Coughlin and Dusek [10] found a 
correlation between heart rate and skin conductance and the 
introduction of secondary cognitive tasks, increasing the cognitive 
load of the drivers. However, while engaging in a secondary task, 
emotional and physical workload factors (body movement, 
temperature, stress, etc.) can also contribute to increases of these 
measures [7].  
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1.2 Pupil Diameter and Cognitive Workload 
One physiological measure that has been found to react to changes 
in CW but not widely referred to in the driving domain is pupil 
diameter (PD), an effect also known as task evoked pupillary 
response (TEPR) [11,12]. This form of CW measurement is less 
intrusive than other physiological measures and could still provide 
an assessment in real-time. Pupillary response indicates levels of 
CW at each moment, communicates differences in processing 
load during different tasks, and conveys variance within the same 
task [13]. While showing that PD varies with emotional 
stimulation, Partala and Surakka [14] noted the difficulty of 
voluntarily varying PD as an advantage of the measure.  
Pupil dilations occur as soon as it processes load and quickly 
returns to baseline state thus creating a sensitive measure of CW 
[9,5]. Palinko, Kun, Shyrokv, and Heeman [5] observed the 
dilation and contraction of pupils as driver's attention was divided 
by a word game. PD was found to increase as the driver thought 
of a word, peaked when the word was uttered, and gradually 
decreased before the next word. This indicated an increase in CW 
as words were recalled which were similar to results of Granholm, 
Asarnow, Sarkin, and Dykes [15] in a digit span recall task. They 
also found that PD increased as processing load fell below the 
resource limits of the cognitive task, was stationary once 
processing load was reached, and decreased when the user 
disengaged active processing, displaying that PD responds to 
varying levels of processing load [15]. 

Iqbal, Zheng, and Bailey [9] measured percentage change in PD 
(PCPS) by subtracting the baseline PD from the size at each task 
and dividing the result by the baseline size. The authors then 
averaged PCPS of participants performing visual tasks on the 
computer and results showed a significant difference in average 
PCPS between easier and more complex tasks. PD was also found 
to correlate with changes in cognitive load that varied over 
hierarchical tasks, indicating its validity as a measure for CW. 
Palinko et al. [5] also looked at mean PD and mean PD change 
rate when focusing on CW changes, results suggesting the 
measures’ usefulness.  

The application of PD has been attempted and seems to hold up in 
the driving environment as well. Recarte and Nunes [16] found 
that when participants were performing a secondary task while 
driving they had significantly larger PDs than when performing 
only the driving task. In a later experiment on detecting targets 
while performing mental tasks, Recarte and Nunes [17] noted 
lower percentages of detected targets causing poorer performance 
as a result of an increase of mental tasks and participants' 
workload. This increased workload while performing tasks was 
also shown by pupillary dilations. Similar results were seen in a 
simulation study where the driver performed a lane-changing task 
and a visual search task [18]. As the visual task was introduced, 
driving performance decreased and PD increased. This 
correspondence between performance and PD has been attributed 
to their convergence, but assessing using PD still creates a finer 
form of measurement of CW [5].  
While research in this domain has included the use of TEPR to 
estimate CW, some researchers’ technologies do not allow for 
access to the data required or are not currently supporting this 
application of the devices used. In order to increase the 
availability of this data and allow for researchers to use TEPR as 
another tool for measuring cognitive load the process of gathering 
and analyzing the data must be more easily completed. The 
current paper discusses the use of Tobii mobile eye trackers to 

measure CW through PD, including the creation of necessary 
programs to get the data from the eye trackers to an analyzable 
state. The paper also compares the results of the PD differences 
between conditions to differences seen in subjective workload 
measures in the same study. The data used in this report is taken 
from a study previously analyzed, written up, and accepted for 
publishing [19]. However, at the time of the research design and 
analysis, PD data was not an available measure due to the lack of 
these programs and was therefore also not gathered in a way to be 
analyzed specifically in this way. This lack of planning to analyze 
the data may have created some of the noise seen in the analysis 
and is discussed along with the support found for the application 
of this technique in future work. 

2. METHODS 
2.1 Participants 
The participants in this analysis were 24 students at a large 
research university in the United States. All participants had valid 
drivers licenses and had normal or corrected to normal hearing 
and vision. The 17 males and 7 females were an average of 20.17 
years old and had a mean of 4.54 years driving experience. Not all 
of the participants included in the initial study are included in the 
current analysis due to technical issues with some data files.   

2.2 Apparatus and Procedure 
To see an extended description of the apparatus and procedure of 
the study this data was taken from see Gable, Walker, Moses and 
Chitloor [19]. In short, participants were asked to wear Tobii eye 
tracking glasses while performing a dual task situation by driving 
the lane change task and executing a search task on a touchscreen 
smartphone. The participants completed 6 conditions during the 
experiment, 1 being a control of only performing the driving task 
and 5 dual task conditions. Of the 5 dual task conditions 4 had 
auditory cues and 1 was performed with no auditory cues. 

2.3 Design and Analysis 
The analysis of the data in the current report as compared to 
previously collected CW data is the focus of this paper. During 
the initial stages of the previous study and during the analysis and 
write-up of the data, the PD measurements were not accessible 
using the software available to the researchers. Recently, 
however, we created two custom programs in our lab that made 
the pupil data obtainable.  

Of the two programs used in the analysis, one was created to pull 
the data out of the native Tobii files and the other to separate the 
data into blocks and give averages. First the program called 
TobiiReader, written in C#, extracts the values for each frame for 
all metrics from the proprietary Tobii projects (“.gfp”s) and 
outputs these into tab-separated documents. This document then 
contains every frame value for all possible values from the eye 
trackers, including any frames where the eye trackers could not 
read the pupil due to the either tracking error or participants 
looking outside of the rim of the glasses. In this instance the file 
reports the pupillary response as 0, which can skew the data and 
should be addressed by anyone recreating this process. A second, 
command line application that was written in Ruby, called 
TobiiParser is then used to interpret the PD by finding averages 
over specific ranges of time. These time ranges are gathered by 
hand based on the timestamps separating blocks or conditions in 
Tobii Studio and input into the command line. TobiiParser then 
outputs the average PD with and without missing values, as well 
the number of missing values. The program could be modified to 
output other information if needed.  



This data was then entered into a spreadsheet along with the 
previously collected TLX ratings for the same participants for 
each of the blocks. Instead of comparing all of the conditions from 
the original study it was decided to only compare 3 of the 
conditions in an effort to save time while still examining the 
abilities of the eye trackers to measure changes in PD. The 
conditions that were chosen included: a control of only 
performing the driving task, the condition that according the TLX 
created the least amount of cognitive load; driving plus the 
secondary task with no sound, the condition that created the 
highest level of cognitive load according to TLX; and driving 
while performing the dual task with the auditory cue of spindex 
TTS (an advanced auditory cue, see [19] for more information), 
the cue that seemed to diminish the cognitive load on the drivers 
the most out of all the dual task conditions. 

3. RESULTS 
Figure 1 displays the mean combined TLX ratings and PDs for 
each of the three experimental conditions included in this analysis. 
A similar trend can be seen between the two measures for the 
three conditions, with the control condition having a much lower 
value and then increasing for the no sound search task condition 
before slightly decreasing in the audio condition of spindex TTS. 
In an effort to investigate this trend a one-tailed Pearson’s r 
correlation test was performed, the scatterplot of which can be 
seen in Figure 2. Results of the test showed a moderate positive 
correlation between the TLX ratings and the PD (mm), r = 0.339, 
n = 72, p = 0.002. 

Paired t-tests showed that the control condition had significantly 
lower TLX ratings (M = 29.8, SD= 16.5) than either the no sound 
condition (M = 61.1, SD= 18.0), t(23) = -8.22, p < .001, and the 
spindex TTS condition (M = 57.0, SD= 15.5), t(23) = -9.13, p < 
.001. No significant difference was seen between the two search 
conditions. Similar results were found for the PD measure with 
the control condition having significantly lower average PD (M = 
102.2, SD= 13.0) than the no sound condition (M = 116.0, SD= 
16.5), t(23) = -10.28, p < .001, and the spindex TTS condition (M 
= 113.4, SD= 16.2), t(23) = -6.20, p < .001, with no significant 
difference between the search conditions.  

4. DISCUSSION 
The creation of these custom applications will allow for the 
measurement of pupillary response in future work and could 
easily be shared with other academics who have encountered the 
same issues with this software lacking in PD analysis abilities. 
The lack of differences between the two search conditions for 
pupil size was possibly due to a lack of trials since no difference 
was seen with TLX ratings, but not at the fault of PD as a measure 
of CW. While the correlation between the TLX and PD was only 
moderate, it does give merit to using this method for estimating 
CW, or using the measure along with other physiological, 
subjective, and performance measures in a multivariate analysis.  
The lack of a stronger correlation could be affected by multiple 
factors, particularly of interest being the issue of looking between 
the driving and secondary task, causing differences in luminance. 
Kun, Palinko, and Razumenić [12] reviewed this topic of 
luminance and the obscuring effect it can have on data when 
measuring CW through pupillary response. They discuss that 
while CW can have an affect of pupillary dilation, the major 
contributor to the size of an individual’s pupil is the pupillary 
light reflex (PLR). This reflex can confound data if luminance in 
part of a scenario is darker than others when using either a 
simulator or an on road study. Additionally, and particularly 
important in the current analysis, when participants are interacting 
with secondary tasks while driving their visual attention can move 
between the screen or road area, and the IVT. This visual 
movement from very separate luminance areas of outside and 
inside the vehicle or simulated cab could have large impacts on 
the pupillary response. Kun, Palinko, and Razumenić [12] discuss 
a possible way of addressing this issue through the use of a 
weighting function. Another option given by the authors is 
creating a scenario with minimal changes in target luminance, 
however this could be difficult to do when a study involves IVTs. 
Although these custom applications work, it would be to our 
advantage to continue to make the process more efficient. The 
need to use multiple applications to get the data into the correct 
format is time consuming. Through merging the applications this 
would decrease the complexity of the process and hopefully make 
the process faster as well. The ability to input time blocks through 
some sort of script would also be a helpful addition to the 
application, as in its current form the process must be done one 
block at a time.  Additionally the two programs used in this 

 
Figure 1. A bar chart displaying the mean TLX ratings and 
PDs of the three driving conditions: driving only, driving + 

search task no sound, and driving + search task spindex TTS. 

 
Figure 2. A scatterplot displaying PD and corresponding 

TLX ratings for all the participants in the three conditions. 



process run on different operating systems (Windows and 
Macintosh) so both types are necessary to complete the process.  

Overall this expansion in abilities will allow for more measures of 
CW and offer variables to researchers where they were not 
possible before. However, before using these applications or any 
like them to analyze previous eye tracking data, the effect of not 
planning a study to measure pupillary response data should be 
considered due to the effects of PLR discussed above. If possible 
the research using this type of data and these custom applications 
should consider the effects of PLR and plan a way to gather the 
necessary data to create a weighting function. The next study 
investigating the effectiveness of the Tobii eye trackers and these 
custom applications will need to address this confounding factor 
to look at the relationship of pupillary response and TLX with less 
noise. Additionally researchers that would like access to these 
applications should understand the applications are not yet refined 
to a commercial level and the analysis remains time consuming.  
While this paper does not directly discuss any standards, this is an 
important factor to consider when investigating pupillary response 
and CW. In its entirety, the measurement of driving distraction 
has a wide range of terms used for similar constructs and forms of 
measurement to estimate CW, and pupillary response within CW 
is no different. However, pupillary response along with some of 
the physiological measures of CW are still in the beginning stages 
of becoming a mainstream form of CW measurement due to 
technologies becoming more affordable and research supporting 
their application more widely available. As these somewhat recent 
measures of CW grow, authors should be able to find a way to 
know the correct way of referring to constructs and measuring 
these physiological factors. This need could be addressed through 
the community interested and active in this area of research to 
come together and decide what measures of CW will be used in 
which way and how the data should be gathered, organized (such 
as the issue with the missing frames in our data or the weighting 
function discussed by Kun et al., [12]), and reported. Whether the 
workshop on cognitive load should push this effort forward 
through the creation of an annual report or leave the standards 
papers to be written through government funded groups such as 
NHTSA is another decision. The decision however, must be made 
before it is too late so as to allow enough time to go by before the 
standards are released and new researchers in the area begin 
performing research and writing it up based on literature not 
addressing or using these standards.  
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