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ABSTRACT 

In this paper we introduce a novel workload assessment tool 

(called PHYSIOPRINT) that is based on the combination of two 

types of physiological signals: electroencephalography (EEG) and 

electrocardiography (ECG). The tool is inspired by a theoretical 

workload model developed by the US Army that covers a large 

number of different workload types relevant for driving scenarios, 

including auditory, visual, cognitive, and motor workload. The 

PHYSIOPRINT classifier was trained on the EEG and ECG data 

acquired during well-defined atomic tasks chosen to represent the 

corresponding types of workload. The trained model was 

validated on realistic driving simulator data from an independent 

study. The highest performance on the atomic tasks was achieved 

for visual workload, with precision of 91.8% and recall of 94.1%. 

The corresponding classification results in the validation study 

were: precision 78.3% and recall 80.6%. The utilized 

classification approach is not computationally expensive, so it can 

be easily integrated into automotive applications.  

Categories and Subject Descriptors 

H.1.2 [Information Systems]: User/Machine Systems – human 

factors, human information processing, software psychology.  

General Terms 

Algorithms, Measurement, Performance, Experimentation. 

Keywords 

Workload, electroencephalography, electrocardiography, driving 

simulator, physiology. 

1. INTRODUCTION 
Due to the rapid advances in technology and related changes in 

consumers' lifestyles and expectations, the motor vehicle industry 

will likely continue to integrate more sophisticated entertainment 

and information systems in new vehicles. The increasing 

complexity of interactions with in-vehicle equipment and the 

unprecedented amount of information streaming from these 

devices, however, create a palpable threat that drivers might find 

themselves overloaded with information that distracts them from 

the primary task of driving. This persistent and, in many cases, 

self-inflicted mental strain may cause driving performance 

decrements and lead to a substantial increase in the number of 

accidents with potentially grave consequences. One way to 

mitigate this issue is to study the driver's interactions with new in-

vehicle technologies and use that knowledge to optimize system 

design and operating procedures. In order to accomplish this goal, 

we need an unobtrusive and objective measure of the driver's 

workload that not only quantifies average workload levels over 

long periods of time, but is also able to continuously capture 

workload variations throughout the task. 

Workload is typically defined as the amount of mental or physical 

resources required to perform a particular task [19]. Its 

quantification is, unfortunately, difficult in practice because each 

individual's capacity of available resources varies greatly, as do 

the strategies for using them. The standard techniques used for 

workload assessment include self-report scales, performance-

based metrics, and physiological arousal measures. Self-report 

measures are popular due to their low cost and consistency, 

though the latter quality assumes that the individual is cooperative 

and capable of introspection and accurate reporting of their 

perceived workload. Some of these scales are one-dimensional 

such as the Rating Scale of Mental Effort (RMSE) [24] and the 

Modified Cooper-Harper scale (MHC) [6], whereas some scales 

comprise subscales that measure specific mental resources, e.g., 

NASA Task Load Index (TLX) [9], Subjective Workload 

Assessment Technique (SWAT) [17], and Visual Auditory 

Cognitive Psychomotor method (VACP) [23]. The major 

drawback of these measures is that they cannot be unobtrusively 

administered during the task itself, but are assessed 

retrospectively at the conclusion of the task, which decreases 

accuracy of this technique. Furthermore, the inherent subjectivity 

of self-ratings makes across-subjects comparisons difficult. Self-

report scales are, therefore, often complemented with an objective 

assessment of performance; this operates on the assumption that 

an increased workload diminishes performance. Performance 

measures include reaction time to different events, accuracy of 

responses, and overall driving performance such as steering wheel 

angle or lane position. The performance assessment is relatively 

unobtrusive and can be accomplished in real time at low cost as an 

indicator of actual workload level. Performance, however, is not 

sensitive enough to workload changes due to the complex 

relationship between the two variables. Performance is typically 

stable across a range of workload levels and deteriorates only near 

the extremes [18]. Moreover, performance measures cannot tap 

into all cognitive resources with comparable accuracy. Lately, 

there has been renewed interest in physiological measures as 

useful metrics for assessing workload. Their use was limited in 

the past by the obtrusive nature of earlier instrumentation, but this 

has changed with the advent of miniaturized sensors and 

embedded platforms capable of supporting complex signal 

processing techniques. Typically used physiological signals to 

derive measures of workload include: electrooculography (EOG) 

[7], electromyography (EMG) [22], pupil diameter [11], 

electrocardiography [20], respiration [5], electroencephalography 

[3], and skin conductance [19]. In some studies, physiological 

measures have been reported as being more sensitive to the initial 

changes in workload than performance-based measures, as they 
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show increased activation before the appearance of significant 

performance decrements [13]. This makes them more suitable for 

driving scenarios as they allow for an appropriate and timely 

intervention or mitigation. However, physiological workload 

measures have multiple drawbacks. First, the physiological 

workload scales are often derived empirically on a set of tasks 

assumed to represent different workload levels and selected ad 

hoc, without detailed consideration of their ecological validity and 

ability to tap into different mental resources (e.g., cognitive, 

visual, auditory, or motor workload). As a result, the models 

trained on such atomic tasks may not perform well when applied 

to the physiological signals acquired during other non-atomic 

tasks even though they seemingly require the same mental 

resources. Second, in spite of the well known fact of considerable 

between- and within-subject variability of nearly all physiological 

signals and metrics, the majority of physiological workload 

models have been developed and validated on a relatively small 

sample of subjects. Third, the classifiers used in the models 

introduced hitherto have typically lacked mechanisms for an 

adjustment of the model’s parameters in relation to individual 

traits, which leads to models that do not generalize well. Finally, 

the models have mostly ignored the considerable amount of noise 

inherent in the acquired physiological signals. Thus, poor 

performance of some models could be attributed to their reliance 

on rather simple mathematical apparatus. 

This paper introduces PHYSIOPRINT - a workload model based 

on the physiological measures of EEG and ECG that is built 

around a well defined and established theoretical workload model 

called Improved Performance Research Integration Tool 

(IMPRINT) [14]. The proposed model is able to distinguish 

between different workload types relevant for driving by 

incorporating complementary sensor modalities. The model is 

trained on a relatively large sample size, and it takes into 

consideration individual differences in physiological signals. The 

trained model is validated on an independent dataset recorded in a 

realistic driving simulator. Moreover, the utilized classification 

approach is not computationally expensive, so it is applicable in 

real time on a fine timescale.  

The rest of the paper is organized as follows. In Section 2 we 

outline the experimental setting while Section 3 reports on the 

experimental results. Finally, in Section 4, we summarize our 

results and give an outlook on future work. 

2. METHODS 
In this section, we introduce the IMPRINT theoretical workload 

model that is used as a basis for the workload classes our 

PHYSIOPRINT workload model aims to classify. We also outline 

our study protocol, including both atomic and non-atomic tasks 

utilized for training and testing of the model, respectively. Lastly, 

we detail acquisition system together with the signal processing, 

data analysis, and evaluation procedures. 

2.1 IMPRINT Workload Model 
The IMPRINT Workload Model was developed by the Army 

Research Laboratory (ARL) [14] and it discriminates between 

seven types of workload: visual, auditory, cognitive, fine motor, 

gross motor, speech, and tactile. Each workload type is further 

quantified on a pertinent ordinal/interval scale, similar to the 

VACP scales [12]. Each of the seven scales is defined by a set of 

behaviors of increasing complexity that are associated with a 

numeric value between 0 and 7. Tasks and activities that mobilize 

more than one type of the mental resources receive separate 

independent scores on each of the relevant scales. Furthermore, 

for each point in time, IMPRINT produces a composite measure 

of the overall workload, which is defined as a weighted sum of the 

type-specific workload values calculated across all tasks that are 

being simultaneously performed. The weights in the formula 

describe the strength of all possible interactions (referred to as 

conflicts) between different workload types and/or different tasks. 

The IMPRINT model has been successfully applied to estimate 

mental workload in a number of settings of military relevance, 

including a strike fighter jet [4], a mounted combat system [16], 

and the Abrams tank [15]. As the model covers a large number of 

workload types, it is well-suited for the driving environment, 

which also employs distinct workload types. In this initial 

classifier development phase, we explored only a subset of the 

IMPRINT workload types: visual, auditory, cognitive, and fine 

motor.  

2.2 Study Protocol 
The PHYSIOPRINT workload classifier was developed and 

validated on the physiological data (EEG and ECG) acquired in 

two separate studies.  

In the first study, physiological signals of 40 young healthy 

volunteers (17 females; age 26 ± 3 years) were recorded during 

four or five atomic tasks used for PHYSIOPRINT training to 

discriminate between the four IMPRINT workload types of 

interest: auditory, visual, cognitive, and fine motor. All subjects 

performed the auditory, visual, and cognitive tasks, while only a 

subset of 22 subjects also completed the fine motor control task. 

Each 1-sec segment of each task was assigned a score on each of 

the four scales. There was a dominant workload type in each 

atomic task, and the majority of 1-sec segments received a single 

non-zero workload score. 

In the second study, six 10min scenarios were designed for the 

driving simulator by Systems Technologies Inc (STI). The 

physiological data recorded during these tasks were used for 

validation of the PHYSIOPRINT workload model. A total of 10 

subjects took part in the experiment. The six test rides were taken 

in a random order, following a training ride at the beginning of the 

experiment. The rest period between the trials was 5min. The 

subjects also completed each atomic task once prior to the test 

rides. Again, all performed tasks were scored on each of the 

analyzed workload scales. Furthermore, the subjects provided 

self-reports of each driving scenario's difficulty after completion 

of the experiment.    

2.2.1 Atomic Tasks 
The atomic tasks were designed with the IMPRINT workload 

scales in mind. The goal for each task was to represent the 

corresponding workload type as closely as possible by engaging 

only the necessary mental resources to increase purity of the 

training data. The following atomic tasks were utilized: 

Auditory Detection Task (ADET). The subject sits still for 5min in 

front of a blank computer screen and presses a button after 

hearing a beep. 

Visual Detection Task (VDET). The subject sits still for 5min in 

front of a computer screen and presses a button whenever a 

geometrical shape appears on the screen. 

Visual Discrimination Task (VDI). The subject sits still for 20min 

in front of a computer screen and presses a button if one target 

shape out of three possible geometrical shapes is shown on the 

computer screen. The shapes are randomly interspersed over time 

(the target shape is presented 70% of the time), and inter-stimulus 

interval ranges between 1.5sec and 10sec. 



Figure 1. Driving Simulator at STI.

 

Forward/Backward Digit Span (FBDS). The subject sits still in 

front of a computer screen and memorizes sequences of 2 up to 9 

digits that are shown on the computer screen and reproduces them 

by typing in the memorized sequence in the same or reverse order.

Fine Motor Control Task (FMCT). The subject holds a needle and 

inserts it into a target hole on a metal plate that is positioned at a 

45º angle, and is instructed to keep the needle within 

hole for 10sec without touching its perimeter. Th

for 5 holes whose diameters were 8, 7, 6, 5, and 4/32ths of an 

inch. The needle diameter was 3/64in. 

Dominant workload types and the corresponding IMPRINT 

workload scores for the atomic tasks are as follows: ADET 

auditory (1.0); VDET - visual (3.0); VDI - 

cognitive (3.7); FBDS - cognitive (5.3); and FMCT 

(2.6) and visual (4.0). 

2.2.2 Driving Simulator 
The developed driving scenarios differed with respect to 

continuous visual-motor workload (related to the road curvature 

and a number of obstacles to be avoided) and the number of 

discrete events that were designed to cover a variety of 

on the visual, auditory, cognitive, and fine motor IMPRINT 

workload scales. There were three different sensory challenges 

during each scenario: (1) auditory challenge -

three possible patterns), (2) visual challenge 

pointing to one of the four possible directions, and 

challenge - speed signs of two different colors (white and yellow) 

placed along the road requiring the subjects to add (if 

to subtract (if white) the 3-digit numbers shown on the sign. 

expected response to the visual and auditory 

button press (fine motor response), verbal acknowledgment 

(speech) or no response (cognitive action), depending 

arrow direction and the honking pattern. During the rides

1), the subjects sat on a gym bicycle whose front panel had been 

removed to avoid obscuring the view at the driving simulator 

screen. After the first 5min of the ride, the subjects were told to 

start pedaling till the end of the scenario (gross motor

The whole period from the onset of a particular stimulus 

(honking, arrow, and sign) till either its disappearance or the 

subject’s response to it was considered a period with the 

dominantly auditory, visual, or cognitive workload, respectively. 

The 1-sec segments of the EEG and ECG that were completely or

 

Driving Simulator at STI. 

The subject sits still in 

front of a computer screen and memorizes sequences of 2 up to 9 

that are shown on the computer screen and reproduces them 

typing in the memorized sequence in the same or reverse order.   

The subject holds a needle and 

plate that is positioned at a 

within the circular 

This was repeated 

8, 7, 6, 5, and 4/32ths of an 

Dominant workload types and the corresponding IMPRINT 

tomic tasks are as follows: ADET - 

 visual (5.0) and 

and FMCT - fine motor 

The developed driving scenarios differed with respect to 

load (related to the road curvature 

and a number of obstacles to be avoided) and the number of 

designed to cover a variety of activities 

isual, auditory, cognitive, and fine motor IMPRINT 

There were three different sensory challenges 

- honking (one of 

visual challenge - arrow signs 

the four possible directions, and (3) cognitive 

speed signs of two different colors (white and yellow) 

e subjects to add (if yellow) or 

numbers shown on the sign. The 

d response to the visual and auditory challenges was a 

), verbal acknowledgment 

), depending upon the 

arrow direction and the honking pattern. During the rides (Figure 

ts sat on a gym bicycle whose front panel had been 

the view at the driving simulator 

the subjects were told to 

gross motor load).  

eriod from the onset of a particular stimulus 

sign) till either its disappearance or the 

subject’s response to it was considered a period with the 

ognitive workload, respectively. 

were completely or 

Figure 2. A subject wearing the wireless B

headset while performing an atomic task.

 

partially (>50%) covered by that period would consequently 

receive the same IMPRINT workload 

scale for the visual challenge, 6.6 on the auditory scale for the 

auditory challenge, and 7.0 on the cognitive scale for the 

mathematical challenge). The 2-sec periods centered around the

subject's response (or, in case of the 

period around the moment of the stimulus disappearance) received 

the appropriate score on the IMPRINT fine motor (score 2.2), 

speech (score 2.0), or cognitive (score 4.6) s

ride was scored with 4.4 on the visual (‘visua

and 2.6 on the fine motor scale (‘continuous adjustive control’). 

The portions with the pedaling also received a score of 3.0 on the 

gross motor scale. 

2.3 Data Recording and Signal Processing
The wireless B-Alert sensor headset [

acquire the EEG and ECG data of all subjects in the studies. 

EEG data were recorded from 9 sites on the head (F3, F4, Fz, C3, 

C4, Cz, POz, P3, and P4 locations of 

system), referenced to link mastoids. The ECG data were recorded 

from two electrodes placed on the left and right collar bone. 

signals were filtered with a band-pass filter

20dB/decade) before the analog to digital conversion

bits/sample), and transferred in real time via Bl

nearby PC where the data was stored onto a disk. T

filters were applied to remove environmental artifacts from the 

power network. The algorithm [1] was utilized to automatically 

detect and remove a number of artifacts in the time

and ECG signals, such as spikes caused by tapping or bumpi

the sensors, amplifier saturation, or excursions that occur during 

the onset or recovery of saturations. Eye blinks and EMG were 

identified and decontaminated by an algorithm [2

wavelet transformation. Eye blinks and EMG bursts were also 

used as binary variables (present/absent) in the PHYSIOPRINT 

workload model.  

From the filtered and decontaminated EEG signal, the 

power spectral densities (PSD) were calculated for each 1sec

epoch of data by applying the short-term Fourier transformation 

(STFT). The following PSD bandwidths were ex

theta slow, theta fast, theta total, alpha slow, alpha fast, alpha 

total, sigma, beta, and gamma. In order to account for individual 

differences in the EEG data, we also utilized relative PSD values

by subtracting the logged absolute PSD values 
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scale for the visual challenge, 6.6 on the auditory scale for the 

auditory challenge, and 7.0 on the cognitive scale for the 
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 ‘silent’ response, the 2-sec 

period around the moment of the stimulus disappearance) received 
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or cognitive (score 4.6) scales. The rest of the 
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received a score of 3.0 on the 

Data Recording and Signal Processing 
Alert sensor headset [1] (Figure 2) was used to 

acquire the EEG and ECG data of all subjects in the studies. The 

EEG data were recorded from 9 sites on the head (F3, F4, Fz, C3, 

C4, Cz, POz, P3, and P4 locations of the 10-20 international 

The ECG data were recorded 

from two electrodes placed on the left and right collar bone. All 

pass filter (0.1-70Hz, roll-off: 

20dB/decade) before the analog to digital conversion (256Hz, 16 

real time via Bluetooth link to a 

where the data was stored onto a disk. The sharp notch 

filters were applied to remove environmental artifacts from the 

] was utilized to automatically 

artifacts in the time-domain EEG 

ikes caused by tapping or bumping of 

the sensors, amplifier saturation, or excursions that occur during 

the onset or recovery of saturations. Eye blinks and EMG were 

by an algorithm [2] based on 

Eye blinks and EMG bursts were also 

used as binary variables (present/absent) in the PHYSIOPRINT 

From the filtered and decontaminated EEG signal, the absolute 

were calculated for each 1sec 

term Fourier transformation 

ollowing PSD bandwidths were extracted: delta, 

theta slow, theta fast, theta total, alpha slow, alpha fast, alpha 

In order to account for individual 

differences in the EEG data, we also utilized relative PSD values 

by subtracting the logged absolute PSD values for each 1Hz bin 



from the total logged PSD in the bandwidth of interest

coefficients were also derived for each EEG channel 

exponential 0-2, 2-4, 4-8, 8-16, 16-32, and 32

some rounds of the model development, the same variables were 

extracted from the left-right and anterior-posterior differential 

EEG derivations that were constructed by subtracting the pertinent 

referential signals (i.e., Fz-POz, Cz-POz, F3-P3, C3

C4-P4, F3-F4, C3-C4, and P3-P4). The proprietary 

measure of alertness and mental fatigue (MF) was also calculated 

from the Fz-POz and Cz-POz derivations using o

Alert algorithm [10]. The ECG signal was processed by a real

time algorithm that determined the inter-beat (R

heart rate. Measures of the heart rate variability (HRV) were 

derived from the R-R time series, such as NN50/NN20 (number 

of successive R-R intervals in the past 10sec that differ by more 

than 50ms and 20ms, respectively) and RMSSD (the square root 

of the mean squared difference of successive RR intervals). 

the extracted variables were then also averaged over a 5

window in 1sec increments to include a short term history

2.4 Data Analysis 
The goal of the data analysis was to test four hypotheses:

H1: Classification results will be increased if a combination of 

complementary input signals (EEG and ECG) is relied on instead 

of a single modality (EEG).  

H2: Classification results will be increased if multiple EEG 

channels from different areas of the scalp are utilized as opposed 

to reliance on only a few channels from adjacent region

H3: Classification results will be increased if concurrent 

measurement of levels of fatigue and alertness is performed and 

these measures are fed to the classifier.  

H4: Classification results will be increased if the workload model 

relies on relative variables and descriptors of a period of time 

leading to the current moment and not only on descriptors of the 

current point in time.  

The predictor variables were identified by the step

selection procedure on all available data. To test the hypotheses 

H1-H4, variable selection was repeated several times within 

different feature spaces:   

FS1 - the EEG variables derived only from the referential 

channels (EEG-REF);  

FS2 - the EEG variables derived from both referential (EEG

and differential channels (EEG-DIFF);  

FS3 - the EEG-REF, EEG-DIFF and all ECG variables; and 

FS4 - the EEG-REF, EEG-DIFF, ECG and mental fatigue scores 

(MF), i.e. all available variables.  

Two separate rounds were conducted in each of the four feature 

spaces:  

- 'No history' round, where the feature vectors included only 

variables calculated on the current segment, and 

- 'Short-term history' round, where the feature vectors included 

averaged variables calculated for each of the 5sec

current segment.  

The selected variables were then used for building 

PHYSIOPRINT, which is a two-level classifier depicted in Figure 

3. The first level outputted the dominant and 

workload (WL) types: WLD and WLS, respectively

four independent classifiers, linear discriminant function analysis

(L-DFA) [8] that fitted a multivariate normal density to each

of interest. Wavelet 

were also derived for each EEG channel in the 

, and 32-64Hz bands. In 

the same variables were 

posterior differential 

were constructed by subtracting the pertinent 

P3, C3-P3, F4-P4, 

The proprietary physiological 

mental fatigue (MF) was also calculated 

POz derivations using our validated B-

The ECG signal was processed by a real-

beat (R-R) intervals and 

Measures of the heart rate variability (HRV) were 

such as NN50/NN20 (number 

that differ by more 

than 50ms and 20ms, respectively) and RMSSD (the square root 

of the mean squared difference of successive RR intervals). All 

averaged over a 5sec sliding 

to include a short term history. 

The goal of the data analysis was to test four hypotheses: 

will be increased if a combination of 

signals (EEG and ECG) is relied on instead 

will be increased if multiple EEG 

channels from different areas of the scalp are utilized as opposed 

to reliance on only a few channels from adjacent regions.  

will be increased if concurrent 

measurement of levels of fatigue and alertness is performed and 

will be increased if the workload model 

relies on relative variables and descriptors of a period of time 

leading to the current moment and not only on descriptors of the 

step-wise variable 

To test the hypotheses 

was repeated several times within four 

the EEG variables derived only from the referential 

variables derived from both referential (EEG-REF) 

DIFF and all ECG variables; and  

, ECG and mental fatigue scores 

ounds were conducted in each of the four feature 

' round, where the feature vectors included only 
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level classifier depicted in Figure 
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, respectively. It included 
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a multivariate normal density to each class 

Figure 3. Two-level PHYSIOPRINT classifier. 

 

with a pooled estimate of covariance.

estimates and prior probabilities, the posterior probabilities (

PVISUAL, PAUDIO, PCOGN, and PMOTOR) 

data originated from a visual, auditory, cognitive, o

workload task were calculated, respectively

were followed by a ‘winner takes all’ block that declared the 

type with the highest probability as the dominant type (WLD). In 

some cases, the second-dominant WL

type with the second highest probability

probability exceeded a fixed threshold (PTH = 0.3).

PHYSIOPRINT classifier further quantified workload intensity 

within the dominant WL type. Level 2 

DFA classifiers: one that differentiated between the visual 

detection (score = 3.0) and visual discrimination task (score 

5.0), and one that further classified the cognitive task as easy (1

digits) or difficult (4-9 digits). 

2.5 Evaluation Procedure 
Once the predictor variables were selected for each combination 

of the feature spaces and history, the WL type

were evaluated using the leave-one-subject

the generalization capabilities of the classifier by testi

data that was not used for training. The model w

all pertinent segments from 39 subjects (21 in the case of the Fine 

Motor WL classifier) and then tested 

The procedure was repeated for all subjects

results were averaged across all cross-

standard approach in the literature when dealing with relatively 

small sample sizes.  

Furthermore, validation of the PHYSIOPRINT classifier was 

performed on the driving simulator data. 

small sample size in the driving simulator 

our analyses to cross-validation of the 

model. Only the best performing model was employed, and only 

its ability to recognize the dominant workload type was teste

i.e., the output of Level 2 was ignored at this stage

3. EXPERIMENTAL RESULTS
In this section, we report on the most discriminative variables, 

PHYSIOPRINT classification results, driving simulator 

performance results, and cross-validation of the PHYSIOPRINT 

model on the driving simulator data. 
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variance. Based on the likelihood 

es, the posterior probabilities (i.e., 

) that the given segment of 

data originated from a visual, auditory, cognitive, or fine motor 

, respectively. The four classifiers 

were followed by a ‘winner takes all’ block that declared the WL 

type with the highest probability as the dominant type (WLD). In 

WL type was defined as the 

type with the second highest probability, but only if that 

a fixed threshold (PTH = 0.3). Level 2 of the 

PHYSIOPRINT classifier further quantified workload intensity 

type. Level 2 comprised only two L-

classifiers: one that differentiated between the visual 

detection (score = 3.0) and visual discrimination task (score = 

that further classified the cognitive task as easy (1-3 

 
Once the predictor variables were selected for each combination 

of the feature spaces and history, the WL type-specific classifiers 

subject-out approach to assess 

capabilities of the classifier by testing it on the 

he model was first trained on 

all pertinent segments from 39 subjects (21 in the case of the Fine 

 on the remaining subjects. 

subjects in the study, and the 

-validation rounds. This is a 

standard approach in the literature when dealing with relatively 

Furthermore, validation of the PHYSIOPRINT classifier was 

ing simulator data. Given the relatively 

driving simulator experiment, we limited 

validation of the Level 1 PHYSIOPRINT 

model was employed, and only 

dominant workload type was tested, 

at this stage. 

RESULTS 
we report on the most discriminative variables, 

PHYSIOPRINT classification results, driving simulator 

validation of the PHYSIOPRINT 



3.1 Selected Variables 
The variables selected in each round and feature space varied in 

number and type, but certain trends were observable in each 

round: (1) When the differential EEG variables were part of the 

feature space, they were dominantly selected, especially PSD 

bandwidth variables for the inter-hemispheric derivations (F3-F4, 

C3-C4, P3-P4); (2) When the ECG variables were part of the 

feature space, the heart rate (HR) variable was always selected as 

significant (but most of the HRV variables were not); (3) When 

the B-Alert measure of mental fatigue was included in the feature 

space it was selected; (4) The EEG variables mostly came from 

the theta (3-7Hz) and beta (13-32Hz) range; (5) The binary eye 

blink variable was selected for the Visual and Cognitive WL 

classifiers, but not the Auditory or Fine Motor WL classifiers; and 

(6) The EMG bursts derived from the EEG channels were never 

selected as significant. 

3.2 PHYSIOPRINT Classification Results 
In this section, we present classification results for both Level 1 

(i.e., differentiation among different workload types) and Level 2 

(i.e., differentiation between the workload levels on the same WL 

type scale) of the PHYSIOPRINT model. 

3.2.1 Level 1 Classification Results 
The summary results for all combinations of the feature space 

(FS1-FS4) and feature vector duration (1sec vs. 5sec) are shown 

in Table 1 for the visual, auditory, and cognitive workload type. 

As one can observe, the results confirm all four hypotheses (H1 - 

H4), and show that the multi-channel EEG and ECG signals 

successfully differentiate between the auditory, visual, and 

cognitive WL types (>80% precision/recall). Comparatively, the 

largest improvements were achieved with the addition of the 

differential EEG channels (~8% increase on average for the same 

feature vector duration), and with the increase in the feature 

vector duration (~4%-10% increase, depending on the WL type 

and feature space); the addition of ECG variables and EEG-based 

mental fatigue (MF) measures brought about moderate 

improvements (2-4% depending on the WL type). These variables 

may, however, be more important in situations when high stress is 

experienced (ECG), or when more complex visual or auditory 

tasks are pursued (MF).  

The Fine Motor WL classifier's accuracy was not shown in the 

same table because this portion of the PHYSIOPRINT model 

could only be tested on a subset of subjects who had performed 

the FMCT task. The accuracy of this classifier showed similar 

trends (i.e., an increase with the addition of the differential EEG, 

ECG, MF and/or extension of the feature vector from 1sec to 

5sec), but the values were relatively lower for any tested 

combination of the feature space and feature vector duration. The 

highest recall and precision – 62.7% and 68.3%, respectively – 

were obtained with all variable types (i.e., EEG-REF, EEG-DIFF, 

ECG, and MF) and 5sec long feature vectors. The data segments 

from the FMCT task were typically misclassified as 'Visual WL'. 

We attribute this, at least in part, to a substantial overlap between 

fine motor and visual workload during the execution of the fine 

motor (FMCT) task. Indeed, the Fine Motor WL was identified as 

the second-dominant WL type in 30% - 40% of the misclassified 

segments (the exact proportion varied with the feature space and 

feature vector duration). Therefore, the modest accuracy of 

identification of the Fine Motor WL type seems to be related to 

the impurity of the task that was nominally declared as the fine 

motor control task.  

 

Table 1. Recall (REC, %) and precision (PREC, %) of the 

Level 1 PHYSIOPRINT model for the auditory, visual, and 

cognitive WL type and different combinations of the features.  

 

 

3.2.2 Level 2 Classification Results 
Given the aforementioned findings, the classification accuracy at 

Level 2 was assessed only for the combination of the all-inclusive 

feature space (EEG-REF, EEG-DIFF, ECG, and FM) and 5sec 

long feature vectors. For the visual workload tasks, the recall and 

precision were (REC/PREC): 78.8%/76.4% for the visual 

detection task and 93.1%/93.4% for the visual discrimination task. 

For the cognitive tasks, the recall and precision were 

(REC/PREC): 75.4%/74.1% for the easy/short digit sequences and 

76.8%/77.5% for the long/difficult digit sequences. 

3.3 Validation on the Driving Simulator Data  
In this section, we first present performance results on the driving 

simulator, and then validation of the PHYSIOPRINT model on 

the physiological data recorded during driving simulation 

scenarios. 

3.3.1 Driving Simulator Performance Results 
In order to test the validity of our simulated driving task, we 

analyzed the subjects' performance on the driving simulator. 

There were a total of 780 discrete visual challenges (57 per 

subject across all six rides) with an equal split of expected 

reactions (260 button presses, 260 verbal acknowledgments and 

260 silent responses); a total of 780 auditory challenges (with 

equal split among the expected responses); and a total of 360 

cognitive challenges (3-digit numbers, half of them positive, half 

negative). In general, the subjects responded accurately to visual 

and auditory stimuli (94.1% accurate responses to auditory and 

90.5% to visual challenges), but had more problems with the 

mathematical (cognitive) task, as the subject arrived upon the 

correct result at the end of the ride in only 41 out of 60 rides 

(68.3%). The majority of the reported results were, however, 

within ±10 of the correct result (57 out of 60, or 95%), which we 

interpreted as a sign that the subjects adequately engaged their 

cognitive resources and aimed at responding to the challenge 

(addition and subtraction of 3-digit numbers), even though their 

affinity/talent for math varied. In general, more errors were made 

during the two most difficult rides (92.6% average accuracy of 

responses to auditory, 87.4% to visual, and 55% to cognitive 

challenges), while the performance was notably better on the other 

four rides (96.1% for auditory, 92.7% for visual, and 75% for 

cognitive challenges). There was no significant difference in 

performance between the portions of the ride without the pedaling 

and those while the subjects had to pedal. Self-reports 

corresponded to the objective findings: the subjects mostly 

complained about the mathematical task and reported the two 

objectively most difficult rides to be significantly more 

challenging than the other four. 



3.3.2 Classification of Driving Simulator Data with 

PHYSIOPRINT Workload Model 
The PHYSIOPRINT classification accuracy was in general 

slightly lower on the data from the driving simulator study than it 

had been on the atomic tasks. Recall and precision (REC/PREC) 

during the periods with dominantly visual workload were 80.6% 

and 78.3% across all subjects and rides. Recall and precision 

during the periods with dominantly auditory workload were 

71.5% and 73.6%, whereas recall and precision during the periods 

with dominantly cognitive workload were only 64.7% and 62.1%. 

When the PHYSIOPRINT classifier was applied to the subject's 

atomic tasks (i.e., VDET, VDI, FBDS, and ADET), accuracy 

increased (REC/PREC: 85.2%/78.3% for the VDET+VDI tasks, 

74.9%/77.3% for the ADET task, and 76.3%/75.7% for the 

cognitive FBDS task). The classification accuracy was, on 

average, ~5% worse during the portions with the pedaling, which 

suggested that changes in heart rate and heart rate variability have 

relatively modest effects on this version of the classifier. The drop 

in performance could not be attributed to an increased level of 

noise in the signals (asserted by visual inspection). The modest 

increase in the classification accuracy when the classifier was 

applied to the atomic tasks on which the model was trained 

(VDET, VDI, ADET, and FDBS) suggested that the between-

subject variability played a role, but was not the only or major 

reason for the drop in classification accuracy in the driving 

simulator study. It is possible that the overlap between the 

different workload types throughout the majority of the ride 

confused the classifier, and that the results could improve once 

more sophisticated mechanisms for detection and resolutions of 

such conflicts are built into the classifier. 

4. SUMMARY AND OUTLOOK 
The current study sought to develop a physiologically-based 

method for workload assessment applicable in the challenging 

automotive setting. We addressed this need by designing a 

comprehensive, sensitive, and multifaceted workload assessment 

tool that incorporates the already established theoretical workload 

framework that both: (1) covers the different types of workload 

employed in complex tasks such as driving, and (2) helps define 

the necessary atomic tasks for building the model. The 

experimental results suggested that the classifier benefits from 

combination of complementary input signals (EEG and ECG), 

better coverage of the scalp regions by an increased number of 

EEG channels, inclusion of concurrent physiological 

measurement of fatigue and alertness levels, and short-term signal 

history. We aimed to overcome the individual variability inherent 

in the physiological data by including the relative PSD variables 

in the feature vector. The generalization capability of the trained 

model was tested by using leave-one-subject-out cross-validation, 

as well as testing the model on the independent driving simulator 

dataset. The proposed method demonstrated that integration of 

physiological monitoring into automotive settings holds great 

promise for real time assessment of the driver's workload.  

In the future, we plan to extend the model to cover all workload 

types (visual, auditory, cognitive, fine motor, gross motor, speech, 

and tactile) together with the corresponding workload intensity 

level subscales from the IMPRINT workload model. In order to 

achieve this, we need to design new atomic tasks carefully. We 

must also refine the existing tasks, especially the FMCT task that 

proved not ideal for representing pure fine motor activity. 

Additional physiologically based inputs, such as EOG, EMG, 

respiration, and stress levels will also be included to enable better 

insight into activations of different workload types. Alternative 

classification algorithms such as multi-label learning [21] will be 

evaluated to facilitate the process of resolving the conflicts 

between different workload types. The final global workload 

score will be a composite measure of all seven resource-specific 

workload type scores (analogous to the overall IMPRINT 

workload score). The weights will be designed in a way that also 

considers the influence of environmental factors, workload 

management strategies, and other individual traits and their effect 

on the overall engagement level of mental resources. The 

classifier will be validated on a larger sample of subjects 

performing a variety of tasks in both laboratory and real-life 

environments (i.e., real car). 

The ultimate PHYSIOPRINT workload assessment tool is 

envisioned as a flexible software platform that consists of three 

main components: (1) an executable that runs on a dedicated local 

(client) machine to acquire multiple physiological signals from 

one or more subjects, processes them in real time, and determines 

global and resource-specific workload on a fine time scale; (2) a 

large server-based database of physiological signals acquired 

during relevant atomic tasks from a large number of subjects with 

different socio-demographic and other characteristics (e.g., degree 

of driving experience); and (3) a palette of real-time signal 

processing, feature extraction, and workload classification 

algorithms. The platform will support a number of recording 

devices from a wide range of vendors (via the appropriate device 

drivers), and enable visualization of the workload measures. The 

users will essentially be able to build their own workload 

assessment methods from the available building blocks of feature 

extraction methods and implemented classifiers. Initially, the 

database will include 100-150 subjects, but we envision that the 

database will continue to evolve as the community grows in the 

following years. 
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