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ABSTRACT
Driving is a safety critical task that requires the full atten-
tion of the driver. Despite this, there are many distractions
throughout a vehicle that can impose extra workload on the
driver, diverting attention from the primary task of driving
safely. If a vehicle is aware that the driver is currently un-
der high workload, the vehicle functionality can be changed
in order to minimize any further demand. Traditionally,
workload measurements have been performed using intrusive
means such as physiological sensors. We propose to monitor
workload online using readily available and robust sensors
accessible via the vehicle’s Controller Area Network (CAN).
The purpose of this paper is to outline a protocol to col-
lect driver monitoring data and to announce the publication
of a database for driver monitoring research. We propose
five ground truths, namely, timings, Heart Rate (HR), Heart
Rate Variability (HRV), Skin Conductance Level (SCL), and
frequency of Electrodermal Responses (EDR). The dataset
will be released for public use in both driver monitoring and
data mining research.
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1. INTRODUCTION
Driving is a safety critical task that requires the full atten-
tion of the driver. Despite this, modern vehicles have many
devices with functions that are not directly related to driv-
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ing. These devices, such as radio, mobile phones and even
internet devices, divert cognitive and physical attention from
the primary task of driving safely. In addition to these dis-
tractions, the driver may also be under high workload for
other reasons, such as dealing with an incident on the road
or holding a conversation in the vehicle. One possible solu-
tion to this distraction problem is to limit the functionality
of in-car devices if the driver appears to be overloaded. This
can take the form, for example, of withholding an incoming
phone call or holding back a non-urgent piece of information
about traffic or the vehicle status.

It is possible to infer the level of driver workload from obser-
vations of the vehicle and the driver. Based on these infer-
ences, the vehicle can determine whether or not to present
the driver with new information that might unnecessarily
add to their workload. Traditionally, such systems have
monitored physiological signals such as heart rate or skin
conductance [3, 13, 7]. However, such approaches are not
practical for everyday use, as drivers cannot be expected to
attach electrodes to themselves before driving. Other sys-
tems have used image processing for computing the driver’s
head position or eye parameters from driver facing cameras,
but these are expensive, and unreliable in poor light condi-
tions [9].

We therefore use non-intrusive, inexpensive and robust sig-
nals, which are already present in vehicles and are accessible
by the Controller Area Network (CAN) [4]. The CAN is a
central bus to which all devices in the vehicle connect and
communicate by a broadcast protocol. This allows sensors
and actuators to be easily added to the vehicle, enabling the
reception and processing of telemetric data from all modules
of the car. This bus and protocol also enables the recording
of these signals, allowing us to perform offline data analysis
and mining. In mining this data, we aim to build a system
that can recognise when a driver is overloaded and then act
accordingly. Our initial work has shown that features ex-
tracted from the CAN are able to support machine learning
models for predicting the cognitive load of a driver [11] or



the state of a vehicle, such as the current road type [10].

This paper proposes a procedure for acquiring a dataset
for this driver monitoring problem, in the form of a su-
pervised classification task. The ground truths are taken
from both experiment timings and physiological measures,
namely Electrocardiography (ECG) and Electrodermal Ac-
tivity (EDA). The remainder of this paper is structured as
follows. In Section 2 we outline the experimental protocol
that is be used to distract the driver during data collection.
Section 3 describes the CAN-bus data in more detail and
states how the ground truth is be achieved. Finally, in Sec-
tion 4 we give details of the format of the data and its release
and briefly discuss its potential impact on driver monitoring
research.

2. EXPERIMENTAL PROTOCOL
The experimental protocol we use is based on that performed
by Reimer et al. [9] and Mehler et al. [7], and is outlined
in Table 2. In their work, changes in physiology and driving
style are observed while the driver is performing the N-back
test as a secondary task to driving. The main difference in
our protocol is that we perform it on a test track and the
ECG electrodes are on the chest rather than the lower neck.
Also, we use gel EDA electrodes with adhesive pads, as we
have found these are more stable and, in our experience,
produce a cleaner signal.

Our implementation of the protocol runs as follows. First,
when the participant arrives, electrodes are attached for
both the ECG and EDA measurements. After this, the par-
ticipant is taken to the vehicle and seated in the driving
position. Once the seat, steering wheel, and mirrors are ad-
justed as appropriate, data recording is commenced. The
protocol then continues with checking that the sensors are
providing a clean and reliable signal, followed by practice
runs of the N-back tests (stages 1 and 2).

The N-back test requires the participant to repeat digits pro-
vided to them in a list with a delay. Here it is operated with
three forms of increasing difficulty, with delays of 0, 1 and
2 and referred to as the 0-, 1- and 2-back tests respectively.
These three difficulty levels have been shown to have an in-
creasing impact on the participant’s physiology and driving
style [7, 9]. In the 0-back test, the participant is required to
repeat digits back as they are said. The 1-back test requires
the participant to repeat the digits with a delay of 1, and
the 2-back test with a delay of 2. Each task is presented in
4 blocks of 10 digits, with a time separation between each
digit of around 2.5 seconds. An example block of 10 digits is
shown in Table 1, with expected responses for the 0-, 1- and
2-back tests. In order to continue with the experiment, the
participant must show a minimum proficiency of 8 out of 10
correct responses for two consecutive blocks of each task.

In order to have a controlled environment and minimize un-
expected events, the protocol must be performed on a simu-
lated highway test track. This track is quiet in comparison
to real world roads, has 4 lanes, and is used solely by auto-
motive engineers who may be using the track at the same
time as the experiment. The participants are instructed to
drive in the second lane at usual highway speeds of around
70mph, changing lanes to overtake when necessary. Because

Stimulus 1 5 9 3 0 2 3 3 2 9 & &
0-back 1 5 9 3 0 2 3 3 2 9
1-back - 1 5 9 3 0 2 3 3 2 9
2-back - - 1 5 9 3 0 2 3 3 2 9

Table 1: Example of the N-back test with a block of
10 numbers. In place of “&” the word “and” is said
by the experimenter, requiring the participant to
provide a response. Where there is a “-” no response
is required by the participant.

Stage Time (minutes)
1. Sensor verification 2:00
2. Task practice 5:00
3. Habituation period 25:00
4. Drive (reference) 3:00
5. N-back test A 2:30
6. Drive (recovery) 3:00
7. N-back test B 2:30
8. Drive (recovery) 3:00
9. N-back test C 2:30
10. Drive (recovery) 3:00

Total 51:30

Table 2: The protocol for the experiment, employing
three N-back tests of different difficulties, presented
in a random orders.

this is likely to be an unfamiliar vehicle and a new environ-
ment for the participants, a habituation period is used (stage
3). Before the commencement of the habituation period, the
vehicle is driven onto the track by the participant.

Once the driver is comfortable on the track, a reference pe-
riod under normal driving is used (stage 4), with all sensors
being recorded. At stage 5, after this reference period, the
protocol alternates between N-back tests and recovery peri-
ods of normal driving (stages 5–10). Each participant under-
goes each of the 0-, 1- and 2-back tests in a random order.
Each of the N-back tests consists of 4 blocks of 10 digits,
with a block separation of 5s. At the beginning of the first
of the 4 blocks, a brief explanation and reminder of the test
being performed is provided. This explanation takes 30s,
while the four blocks take the remaining 2 minutes posted
in Table 2. The recovery periods are each of normal driving,
with no secondary task. Once each task has been performed
and the final recovery period has taken place, the vehicle is
then taken off the track and data recording is ended.

3. DATA COLLECTION
There are over 1000 signals that can be recorded from the ve-
hicle’s CAN-bus. Those signals which are expected to have
relevance to driver workload include, steering wheel angle,
pedal positions and vehicle speed. Many others are likely
of no relevance to driver monitoring and should be removed
before attempting to predict driver workload. However, to
ensure that all the relevant signals are present in the dataset,
we recorded the full set of signals at a sample rate of 20hz
during the experiment. Each of these signals was written
to a hard disk by a data logging system located under the
passenger seat.



Figure 1: Screen shot of the video output recorded
during the experiment, with driver and forward fac-
ing cameras and GPS details overlaid.

ECG and EDA signals were recorded via a GTEC USB
biosignal amplifier (USBamp). Three point ECG gel elec-
trodes were attached on the driver’s chest, close enough to-
gether to minimize any noise generated through shoulder
movement. The adhesive gel EDA electrodes were attached
on the participant’s non-dominant hand, on the underside
of the index and middle fingertips. Surgical tape was then
used to further secure them in place, minimizing any move-
ment of the sensor contacts while driving. The wires from
the ECG electrodes came out of the top of the participants
shirt, while the EDA wires were positioned to the side of
the non-dominant hand. Note that the vehicle used has an
automatic transmission and the driver does not need to use
their hands for gear selection.

The GTEC USBamp resides in the rear of the vehicle, with
sensor wires positioned away from any intrusion of the driver.
This connects to a laptop, where the data was recorded at
256Hz. The laptop also had input from the CAN-bus time
signals for synchronization purposes, which is provided at
10Hz. In order to match these signals in time, therefore,
some re-sampling is performed. Further to this, driver and
forward facing cameras record video throughout the exper-
iment, with GPS time overlaid on the image, as shown in
Figure 1.

From this data, there are five ground truths that we use to
produce classification problems. These are extracted from
the timings of the tasks during the experiment, the EDA
signal, and the ECG signal. The timings of the tasks pro-
vides a ground truth of what the participant was doing at a
given point in time. The EDA signal provides two measure-
ments, the Skin Conductance Level (SCL) and frequency of
Electrodermal Responses (EDR), both of which are known
to increase while a participant is under high workload [7, 5,
1]. The skin conductance level is provided by the absolute
value of the EDA signal, whereas EDRs are found by spikes,
as illustrated by the red dots on the EDA signal in Figure 2.
Finally, two ground truths can be extracted from the time
differences between R-peaks, highlighted by the red dots on
the ECG signal in Figure 3. Heart Rate (HR) is calculated
as the number of R-peaks per minute, whereas Heart Rate
Variability (HRV) is a measure of the variation of the time

Figure 2: Two minutes of an EDA signal recorded
during driving. The red dots highlight EDRs, which
increase in frequency under workload. The SCL is
given by the signals absolute value.

Figure 3: Five seconds of an ECG signal recorded
during driving. The red dots highlight the R-peaks,
which can be used to compute the HR and the HRV.

delays between R-peaks [7, 2, 5, 8]. Under higher workload
demands, HR is known to increase and HRV has been shown
to decrease. In computing HRV we opt to use Standard De-
viation of Successive Differences (SDSD) of RR-intervals, as
a result of findings by Mehler et al. [8].

From each of these ground truths, both binary and multi-
class classification problems are constructed. The binary
classification problems all have class labels of Normal driv-
ing and Distracted driving. If the timings ground truth is
used, the label is Normal unless a secondary task is being
performed, in which case it is Distracted. For all the other
ground truths, a value close to the baseline is Normal, and
a significant change from the baseline is Distracted.

The multi-class classification problems are very similar, but
the Distracted label takes account of different amounts of
difficulty, workload or physiological response. For instance,
the timings ground truth can provide three levels of difficulty
of the secondary task, relating to which of the 0-, 1- and 2-
back tests were being performed. From the HR, HRV and
EDA signals, the amount of change can be used in providing
more detail on the level of workload, such as a small change,
medium change, or large change. In these cases, the labels
are be Normal, Low, Medium and High, relating to the
difficulty or workload level.



For this dataset we executed the protocol with 20 partic-
ipants, selected from people who are regular drivers, but
who have not previously driven on the test track. A Range
Rover Sport was used, and was the same vehicle through-
out to maintain consistency for both the CAN-bus data and
each participant. The direction of the test track is reversed
once per week, meaning that around half the participants
travel clockwise, and around half travel anti-clockwise.

4. DATA RELEASE
The dataset is available for download via www.dcs.warwick.

ac.uk/dmd/ in a comma separated variable (csv) format,
with samples in temporal order at 20Hz. Each of the 10
class labels are be provided for each of these samples. The
physiological data are also be available, as this may have
other uses to researchers. This physiological data has times-
tamps, so that it can be associated with the CAN-bus data,
but the sample rate remains at 256Hz.

Because many of the signals recorded are be irrelevant to
the problem, these have been removed before the release of
the dataset. To avoid any human selection bias, correlation
analysis with Mutual Information (MI) [12] is used; where
features with a MI below a threshold have been removed.
Some of those which are kept have been obfuscated so that
commercially sensitive details of the CAN-bus and telemetry
signals are not made publicly available.

The production and release of such a dataset may bene-
fit both the driver monitoring and data mining communi-
ties. The data naturally has high autocorrelation, and sev-
eral irrelevant and redundant signals; all of which affect the
performance of a classification system [6]. As well as this,
some of the signals may be correlated with time, introduc-
ing biases. Overcoming these issues is not only essential
to predicting driver behaviour, but they are also difficult
problems for data mining in general. We provide a central
dataset against which driver workload monitoring methods
and temporal data mining techniques can be evaluated and
compared.

5. CONCLUSION
In this paper we have outlined a procedure for collecting
a dataset for the driver monitoring problem. Five ground
truths are provided, taken from experiment timings and
physiological data. The experiment timings contain when a
secondary task is being performed, and which task that was.
The physiological data, namely ECG and EDA, provide HR,
HRV, SCL and frequency of EDRs as ground truths, each
providing two sets of class labels.

This dataset will be released for public use, with several
vehicle telemetry signals and the 10 class labels. As well as
this, the raw physiological data will be released, as this may
be used for other forms of analysis.

If the outcomes of analysis of this dataset and collection pro-
cedure are positive, then we intend to use a similar set-up for
collecting a second dataset, which is more representative of
real world driving. For instance, it would be more realistic
if EDA or ECG could be used for ground truth, indepen-
dent of a secondary task such as the N-back test. In future,
therefore, subjects may be made to drive for long periods

of time under normal circumstances on public roads. The
ECG and EDA sensors might then provide a reliable ground
truth for real world workload, for use in a classification task.
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